
The Cross-linguistic Phonological Frequencies (XPF) Corpus

2020-12-31

1

Preface

The Cross-linguistic Phonological Frequencies (XPF) Corpus is a collection of phonemic lexicons,
or grammars, used for the primary purpose of studying information-theoretic universals in spo-
ken languages. It was constructedwithin the Department of Cognitive, Linguistic, and Psycholog-
ical Sciences (CLPS) at Brown University in the years 2018-2021. The composition of this corpus
was funded by the National Science Foundation (NSF BCS-1829290).

This corpus would not have been possible without the tireless effort of a number of undergradu-
ate students. We thank them for combing through and assessing existing documentation of lan-
guages’ phonological systems, and then creating computational grammars to best reflect those
languages using regular expressions. We offer special thanks to Rachel Gutman who made the
creation of this corpus possible by collecting a pilot version, funded by the Karen T. Romer Under-
graduate Teaching and Research Awards (UTRA) at Brown, which served as a proof of concept.
We would also like to thank Nicholas Tomlin who created the initial JavaScript version of the
main code. Finally, we would like to acknowledge Megan Kairiss, Madalyn Critz, and Delphine
Morse Mahos for researching several languages that are now part of the corpus.

Information about the Corpus

Aim

One of the main goals of linguistics is to understand what universal trends persist across multiple
unrelated languages (Greenberg, 1966). Resources such as theWorld Atlas of Language Structures
(WALS, Dryer & Haspelmath, 2013), the UCLA Phonological Segment Inventory Database (UP-
SID, Maddieson, 1984), the Phonetics Information Base and Lexicon (PHOIBLE, Moran, McCloy,
& Wright, 2014), and PBase (Mielke, 2008) have facilitated the discovery of many such trends,
including ones that they were not originally designed to discover.

The growing availability of written language-use data made it possible to extend such questions
beyond merely asking whether a phenomenon exists in a language (e.g. whether a particular
language has a fixed word order) to asking how often and in what contexts a phenomenon occurs
(e.g. whether word order minimizes dependency length, Futrell, Levy, & Gibson, 2020). One of
the oldest universals in linguistics, Zipf’s law of abbreviation (Zipf, 1935), belongs to the second
category. The extension of such efforts to the segmental domain has been severely limited by
the discrepancies that lie between written language and spoken language: Different languages
employ different strategies to translate the representations of words to written form, and it is
linguistically meaningless to draw conclusions from the distribution of particular characters.

2

TheXPF corpus aims to bridge this gap. There are hundreds of languages whose written form can
be translated back to its phonemic form, and when combined with existing corpora, such as the
Crúbadán Corpus (Scannell, 2007), the phonemic representations can be used to answer questions
that necessitate information about the fine grained distribution of sounds and their environments.
The corpus comprises a set of rules that specify how alphabets can be translated to phonemic
representations, language documentation summaries that justify particular correspondences, and
Python and JavaScript code that can read a particular rule set, and use it to translate written input
to its corresponding phonemic representation.

Name and abbreviation

The name of the corpus, Cross-linguistic Phonological Frequencies, should be abbreviated as XPF.
The <X> is meant to be pronounced as in xylophone, i.e. /z/, and the <P> is silent. Using American
English standard vowel epenthesis rules, the recommended way to pronounce the abbreviation
is therefore /zɪf/, as in the American English pronunciation of the name Zipf.

Distribution

The corpus is intended to be distributed under CC BY-NC-SA 4.0 license,1 which means you may
do the following:

Share Copy and redistribute the material in any medium or format

Adapt Remix, transform, and build upon the material

Under the following restrictions:

Attribution Youmust give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the
licensor endorses you or your use.

NonCommercial You may not use the material for commercial purposes

ShareAlike If you remix, transform, or build upon the material, you must distribute your contri-
butions under the same license as the original.

We reserve the right to provide the corpus under other licenses as well.

The corpus is made available on GitHub (https://github.com/CohenPr-XPF/XPF), and is intended
to be used for research purposes. We provide the following (all of which are described more in

1Additional information about the license can be found here: https://creativecommons.org/licenses/by-nc-sa/4.0/.

3

detail throughout the manual), where langcode stands for the BCP-47 code for each language
(Phillips & Davis, 2009).2

• The documentation of each language (langcode.Rmd), see .
• The bibliography used for the documentation (langcode.bib).
• The rules to translate each language (langcode.rules), see .
• Sample word to IPA translations for each language (langcode.verify), see .
• The code responsible for implementing the translation rules (translate04.py - current
version), see .

• A utility program for subsetting word frequencies of word lists (stopatn.sh), see .
• A utility program for obtaining informativity measures of segments within words
(contextRep.py), see .

• A utility program for deriving summary statistics of language and frequency files
(sumstats01.py), see .

• A summary table, which contains metainformation about the different languages (langs-
list.tsv), see .

Corpus Composition

The XPF Corpus consists of information for 201 languages, spanning 50 different language fam-
ilies. Table 1 displays the breakdown of the major language families represented in the corpus
(i.e. those that have more than 5 associated languages), and Figure 1 displays the visual repre-
sentation of the corpus’ global spread. In terms of what’s available for each language within
the corpus, there are two main components: the language description and the corresponding
phonemic grammar. These are described in and below.

As previously stated, our objective is to create phonologically rich data based on languages’ or-
thographies. This may seem problematic; there are several aspects, such as stress and tone, that
aren’t generally indicated through orthography, which might compromise or limit certain types
of research (Seifart, 2006). We gave up on representing stress in the corpus at an early stage, but
we believe this information could be added by third parties in cases in which stress is predictable
from written and phonemic forms.

In short, the corpus focuses on phonemic features, and may under-represent suprasegmental fea-
tures. Moreover, our focus is put on the translation of words in isolation rather than in sentences
(see), so certain prosodic features like intonation that can extend phrasally are not available. The
only suprasegmental we do account for is tone, and we only do so when it is clearly and system-

2con is a reserved name in Windows OS, and we therefore changed the langcode for Cofán to con_Cofan.

4

atically marked in the orthography (e.g. with diacritics like an acute accent (´), grave accent (‘),
hook (̉), etc., as in Vietnamese, or with particular graphemes in identifiable positions such as
with ⟨b⟩, ⟨j⟩, ⟨v⟩, etc., as in Hmong syllable codas).3 Apart from this, we try to avoid ambiguity
and conflation as much as possible, which is most crucially maintained in the language selection
process.4 The main criteria for selecting languages involved identifying those that were phonem-
ically consistent, meaning they had one-to-one correspondences between the graphemes in their
orthography and their phonemes. We were, however, unable to avoid this completely, which is
discussed more in .

Language family Number of languages in language family

Arawakan 9
Austronesian 28
Indo-European 24
Mayan 12
Niger-Congo 7
Trans-New Guinea 24
Turkic 13
Other 84

Table: The distribution of languages in the corpus. Other stands for language isolates, language
groups that are represented by fewer than 5 languages, and all creoles.

Language Family

Arawakan

Austronesian

Indo-European

Mayan

Niger-Congo

Other

Trans-New Guinea

Turkic

Figure 1: World Map of XPF Corpus Languages

3During the language selection process, if a language was indicated to have contrastive tone, yet it was unmarked,
we “abandoned” the language (i.e. it wasn’t included in the corpus). This method was applied to other languages that
had several phonemic contrasts that were not recoverable from their alphabetic representation.

4The Crúbadán Corpus (an NSF-funded resource, Scannell, 2007) was used as the main point of reference for
selecting the different languages.

5

Language Descriptions

Each language within the corpus has a language description (langcode.Rmd files) providing basic
information, which was consolidated from existing documentation.5 Each description includes
the following sections:

1. Background: the language family and the geographic area in which it is spoken
2. Phonology6: the consonant, vowel, and tonal (if applicable) inventories
3. Alphabet/orthography: the grapheme to phoneme correspondences
4. Syllable structure (if available/relevant)
5. Lenition rules (e.g. degemination, voicing, spirantization, deletion)
6. Miscellaneous information or relevant phonological processes
7. References

Depending on the language, the aforementioned sections may include more detail than others.
More detail generally accompanies languages that either had contradicting existing documenta-
tion (e.g. disagreement around native phonemes) or ambiguous orthographies (i.e. the alphabet
was inexplicit, or the correspondences between graphemes and phonemes weren’t clearly de-
fined). In lieu of these occurrences, the more likely or the most corroborated descriptions were
prioritized and justified. However, this does mean that our grammars may not agree with partic-
ular analyses or theoretical viewpoints.7

Although the language descriptions in their entirety are important, some sections aremore crucial
than others, especially in terms of constructing the phonemic grammars. The phonological inven-
tories and alphabets are undoubtedly the most important for this aspect, given that we need the
explicit grapheme to phoneme correspondences for the construction. The other sections mainly
help give a more well rounded picture of each language, and the lenition section in particular
provides possible points of analysis that could be used to observe cross-linguistic tendencies.

Given that the corpus is dependent on each language’s grapheme to phoneme correspondences,
we provide an example inventory in Table 2, which is reflective of the alphabet/orthography sec-
tion in each of the language descriptions. This example inventory is representative of a phone-
mically consistent language, but as previously mentioned, we were unable to avoid phoneme

5A reference list of all sources used in this corpus is provided here TODO: provide.
6Although languages tend to have loanwords (Tadmor, 2009), resulting in the adoption of non-native phonemes,

we strictly account for native phonemes. The motivation for this decision stems from the desire to capture a given
language’s native phonology with as little noise, or outside influence as possible. Moreover, it serves as an additional
method of eliminating chances of phoneme conflation. Loanwords, therefore, may be mistranslated.

7All components of the corpus are made available, including the raw code. Therefore, should any of the grammars
warrant modification due to alternative interpretations, human error, or alternative research purposes, changes can
be easily made.

6

conflation completely. This means that some languages (roughly 40) involve a one-to-two or a
one-to-many correspondence for at least one grapheme. For example, Batak Karo, an Austrone-
sian language, uses the grapheme ⟨e⟩ to represent /e/, /ɯ/, and /ɘ/ (Woollams, 1996). Languages
with conflation are still provided with a grapheme to phoneme inventory, however, they are ac-
companied by a comment column that specifies the default correspondence that’s represented
in the constructed grammar. So, the comment in the Batak Karo example is: /ɘ/: default in the
rules. The default correspondences are justifiedwithin the documentation, but inmost cases, they
prioritize the representation of the most (or what appears to be the most) frequently occurring
phoneme given the options. Such languages were flagged as “compromised.”

There were other issues that led languages to be flagged as compromised too (about 20 languages).
One common reason was that certain phonemes weren’t consistently marked in the orthography.
Some languages, for example, do not mark or inconsistently mark the glottal stop (e.g. Nigerian
Fulfulde: McIntosh, 1982; Mekeo: Chung, 2009; Tz’utujil: Dayley, 1985). This observation tends
to be a point of debate around whether or not the unmarked or inconsistently marked phoneme is
even a phoneme or not, but that’s whywe flag these languages in the first place. Other reasons for
a language to be compromised include extremely inconsistent documentation, ambiguity related
to the marking of diacritics (predominant in abugidas), and phonetically based orthographies
(i.e. those that represent surface level or allophonic production).

For all 62 compromised languages, the compromising elements are presented at the top of the
language descriptions. They are also documented in the file langs-list.tsv, either as a comment
or regular expression, if applicable (see).

The complete list of available languages within the corpus is presented in Table 3, which specifies
the language, the corresponding BCP-47 code, the language family, and the status (i.e. whether
it’s compromised or not).

Grapheme Phoneme

a /ɑ/
b /ɸ/
e /e/
f /f/
g /ɣ/
h /h/
i /i/
k /k/
l /ɭ/

7

Grapheme Phoneme

m /m/
n /n/
o /o/
p /p/
s /s/
t /t/
u /u/
y /j/
’ /ʔ/

Table: Grapheme to Phoneme Correspondences in Benabena

Language Grammars

Along with the descriptions, each language has a corresponding phonemic grammar (lang-
code.rules files). These are the computational representations of the grapheme to phoneme
correspondences that can be used to translate a language sample (e.g. a word list) into its phone-
mic form. The grammar for the correspondences presented in Table 2 is shown below.

Benabena Rule Set

Written by: Bill

Last Updated: 2019-09-30

type,sfrom,sto,weight,precede,follow,comment

Classes

class,apostrophe,['ꞌˈ‘’],,,,

class,passthrough,[efhikmnopstu],,,,

Individual Letters

sub,a,ɑ,4,,,

sub,b,ɸ,4,,,

sub,g,ɣ,4,,,

sub,l,ɭ,4,,,

sub,y,j,4,,,

sub,{apostrophe},ʔ,4,,,

Misc. Rules

sub,({passthrough}),\1,0.1,,,

8

The most meaningful part of this grammar and any of the grammars within the corpus is the
instructions, which are presented by the line: type,sfrom,sto,weight,precede,follow,comment. Each
of the subsequent lines are thought of as rules, written through a series of regular expressions,
outlined by these instructions. The bulk of these instructions depend on the first classification,
which is type, so we explain the remaining instructions accordingly for each type below. type
refers to the type of the rule in question. There are six different rule types and each one dictates
how the remaining instructions are handled or what the input for those instructions should be
(mainly important for sfrom and sto).

1. word rules: word rules are plain substitution rules. If a word from a language sample
matches the sfrom column, it is replaced by the sto column, and avoids further processing.
Thus, these rules only make use of the sfrom and sto columns.

Example:

word,cat,k æ t,,,,

2. pre rules: All translations from orthographic to phonemic representation occur in lower-
case. For some languages, the processing of certain lowercase characters/graphemes goes
wrong. These preprocessing rules, however, strictly deal with this as a first step in the
translation process as they explicitly translate problematic uppercase forms to the correct
lowercase forms. Both the sfrom and sto columns are expected to contain orthographic in-
put: sfrom with the uppercase form, and sto with the lowercase form. Translation is done
by index: The first character in the sfrom column is replaced with the first character from
the sto column, the second with the second, etc. This strategy makes it possible to perform
only very simple substitutions, akin to tr in POSIX or chartr() in R, and is used very
sporadically in the corpus. In most instances, it controls for the dotted Iı and dotless İi in
certain Latin alphabets (e.g. Azerbaijani). pre rules only make use of sfrom and sto.

Example:

pre,Iİ,ıi,,,,"uppercase to lowercase conversion",

3. match rules: match rules are plain substitution rules at the level of an individual letter.
If a letter matches the sfrom column, it is replaced by the sto column, and avoids further
processing. This particular rule type is only used in the constructed Korean grammar, with
each rule being automatically generated, given the sheer number of possible stroke combi-
nations within a syllable block.8

8Each Hangul syllable block, of which there are 11,172, is encoded precompositionally, thus treated as an indi-
vidual “letter”. We did not opt for compositional encoding (i.e. encoding individual jamos, or alphabetic characters,
based on initial, medial, or final position within a syllable block), as it is not the preferred method for most software

9

Example:

"match","가","{G} {A}",1,"","","autogenerated from GA"

"match","각","{G} {A} {G}",1,"","","autogenerated from GAG"

"match","갂","{G} {A} {GG}",1,"","","autogenerated from GAGG"

4. sub rules: sub rules are the core part of the translation scheme, and rely on input from
all of the instructions mentioned prior. Given orthographic input, a sub rule is applied if
sfrom matches the grapheme in question, precede matches the preceding context, follow
matches the following context, and the weight is the highest of all rules that concern that
particular grapheme (the behavior is not defined if multiple rules with identical weights
for the grapheme in question match). If no rule meets these requirements, the grapheme
is translated to some non-IPA default, currently @. Irrespective of the explanations below,
every property (except weight) can contain class rules (described below in 5).

• sfrom represents one alphabetical letter (as defined by the utf8 standard).

• sto represents zero or more phonemes (space-separated) that the letter should trans-
late to. The phonemes are presented in IPA. In a handful of cases sto contains non-IPA
outputs that are subsequently rewritten by ipasub rules (see below).

• precede represents a regular expression that must match the preceding context. This
expression ends with $ (added by the program), ensuring that the expression matches
the context that immediately precedes sfrom. ^ in the precede column therefore des-
ignates the beginning of a word, leaving ^$ as an empty string.

• follow similarly represents a regular expression that must match the following con-
text. This expressions starts with ^, ensuring that it applies to the context immediately
following the letter in question. $ in the follow column therefore designates the end
of a word, leaving ^$ as an empty string.

• weight represents the relative priority of the rule, with higher values overriding lower
values. The goal is to designate rules that take priority over other rules. This is crucial
in instances where one grapheme with a particular phoneme correspondence also
makes up part of a digraph with a separate phoneme correspondence. For example,
if we have a default rule for ⟨c⟩ (which translates to k), and a specific rule for ⟨c⟩
(which translates to /tʃ/ when ⟨h⟩ follows, representative of the digraph ⟨ch⟩), we

nor is it as robust (Tan & Lim, 2011; The unicode standard version 5.2.0, 2009). The match rules could have been
performed using sub rules (see below); however, their reliance on regular expressions is computationally expensive.
Therefore, we opted for the computationally cheap method of direct matching.

10

want to make sure the specific rule applies rather than the lower priority rule when
appropriate. Thus, we give the specific rule a higher weight.

Example:

sub,c,k,1,,,"Default rule for c"

sub,c,tʃ,2,,h,"Specific rule for c"

When handling digraphs or multigraphs, typically separate rules need to be added to control for
all the letters that compose them. For instance, with the ⟨ch⟩ example above, given that ⟨c⟩ is
in the sfrom column, it is directly translated to /tʃ/; however, ⟨h⟩ is merely used as a contextual
identifier for the translation of ⟨c⟩, so we still need to control for the translation of ⟨h⟩. Specifically
we need an additional rule to translate ⟨h⟩ to nothing as it is no longer relevant in this particular
context. This would be represented as such: sub,h,,2,c,,"clean-up".

5. class rules: class rules define internal substitution guidelines meant to improve readability
or allow reuse to recurring elements. Only the sfrom and sto columns are used. sfrom
defines the name of the class, and sto defines the value of the class. In terms of improving
readability, class rules are specifically helpful for non-Latin alphabets, given that it is not
practical to manually type these characters repeatedly in subsequent sub or ipasub rules
(discussed below).

Example:

class,pi,π,,,,,

sub,{pi},p,1,,,,

Regarding reuse, class rules are beneficial in eliminating the redundancy of similarly be-
having graphemes. For example, instead of writing the same sub rule three times for ⟨c⟩
such that it translates to /k/ preceding ⟨a⟩, ⟨o⟩, and ⟨u⟩, the similar contextual graphemes
can be put into a class, resulting in only one sub rule (⟨c⟩ translates to /k/ preceding back
vowels).

Example:

class,back_vowels,[aou],,,,

sub,c,k,2,,{back_vowels},"<c> translates to /k/ when preceding back vowels",

6. ipasub rules: ipasub rules are responsible for performing substitutions on the output IPA
directly. That is, they are the final step within the translation process. They are intended
to be used sparingly; however, given certain orthographies (e.g. those with a number of
diacritics) or phonological inventories (e.g. those with phonemic consonant/vowel length),

11

they may greatly increase readability. sfrom designates the input pattern, sto designates the
replacement string, and weight, unlike sub rules, designates the order of application. These
can be as complex as python3 allows, but should ideally be used to change what constitutes
a phoneme.

Example:

ipasub,({consonant}) \1,\1 ː,1,,,treat consonant gemination as a special phoneme (e.g. t t → t ː)

ipasub,({vowels}) \1,\1ː,1,,,treat vowel gemination as a distinct phoneme each time (e.g. i i → iː)

ipasub, ʷ,ʷ,1,,,attaches labialization diacritic to phonemes

Phonemic length was handled computationally in two separate ways. If length was contrastive
for consonants or vowels of particular natural classes (e.g. voiceless stops; tense vowels), the
length diacritic (ː) was kept separate from those phonemes (e.g. /k ː/). However, if length was
a contrastive feature of idiosyncratic phonemes, the diacritic was “attached” to the phoneme
(e.g. /kː/). Most languages within the corpus that have this feature were coded under the former
approach. We additionally mark naturally occurring gemination in some languages where it
occurs (typically at syllable boundaries), but such phonemes that undergo this process are also
space-separated from the diacritic. These two alternatives are exemplified above.

If a language can be represented by a number of alphabets (e.g. Cyrillic and Latin), it may have
multiple rules files. Currently five languages have two separate rules files.

Translation Scheme

Once the computational grammars are specified, they can be testedwith the developed translation
scheme. The most current version of this translation scheme is translate04.py. Essentially, it
iterates through the specified rules when presented with a list of words, and translates them to
their phonemic form.

Rules can be tested using python3 (or python depending on the machine), once the name of the
script (translate04.py), the language specific rules file, and the words to be translated are specified.
Using the rules file for Benabena (bef as the BCP-47 language code) as an example, we would type
the following in the terminal:

python3 translate04.py -l bef.rules cat brick log

This ismerely an example; thewords chosen to be translated are not native to Benabena, so certain
graphemes are not translatable and the output, which is presented below, is not representative of
the language’s phonology. For more informative results, words that are actually present within
the selected language should be used.

12

cat @ ɑ t

brick ɸ @ i @ k

log ɭ o ɣ

The example above demonstrates the simplest method of implementing the translation program.
However, the program has a number of parameters that make for more efficient and justifiable
translations. These include:

-l specifies the rules file (as described above), which should be in csv format.

-v specifies the log level (higher→more information). In future releases the distinction between
different log levels would be clearer.

-c specifies the verification file (described below in), which should be in csv or tsv format.

-r specifies a file from which words should be read for translation. Only the first word in every
line is read, to facilitate a use case with a counts column.

This might look like:

python3 translate04.py -l bef.rules -c bef.verify.csv -r bef_words.txt

or, with piped input (using the Crúbadán Benabena word list):

bzcat bef.txt.bz2 | python3 translate04.py -l bef.rules -c bef.verify.csv -r-

Depending on the words within the text file, the output should be extremely similar to the output
in the first example.

Grammar Verification

Considering that the grammars were all manually constructed, we needed to verify that they
behaved how they were expected to. To do so, we created sample word to IPA translations for
each language (langcode.verify files), and ran them against the translation scheme. Notification
of incorrectly translated words signified that the constructed grammar was somehow incorrect
and in need of modification. Our main objective was to provide at least one word that tested the
behavior of each phoneme within the language. Each verify file is in csv format, and specifies
the word, the expected IPA (space-separated) output, and any additional comments (e.g. what
phoneme is the focus). A sample of Benabena’s verify file (bef.verify.csv) is provided below.

akaluya'a,ɑ k ɑ ɭ u j ɑ ʔ ɑ,"a"

bi'ehibe,ɸ i ʔ e h i ɸ e,"b"

etehi,e t e h i,"e"

13

falu'afu,f ɑ ɭ u ʔ ɑ f u,"f"

gegisa,ɣ e ɣ i s ɑ,"g"

Although all grammars have been verified, we still recommend involving some sort of verify file
for any translation as a sort of sanity check.

Utility Programs

In addition to the general translation scheme, we provide a variety of utility programs that are
likely to aid future research.

Evaluating Frequency Files

stopatn.sh is a script that reads word frequency files from standard input, and subsets spe-
cific word/frequency data based on set parameters. The program has the format stopatn.sh
n [minfreq], and accomplishes three things:

1. It removes any word that has a frequency lower thanminfreq (defaults to one if there is no
filtering).

2. It finds the frequency of the nth word in decreasing frequency order.
3. It provides all words whose frequencies are at least as high as that of the nth word.

The program reads word frequency lists from standard input. The input is assumed to have
Crúbadán format (i.e. word freq). Here is an example using the Crúbadán word list for Benabena:

bzcat bef.txt.bz2 | ./stopatn.sh 5 2000

Therefore, after eliminating words that have frequencies less than 2000, the program finds the 5th

position (lu 3819), in descending order, while providing all words with frequencies that are at
least as high:

huto 4741

luto 4367

yabe 4201

To 4083

lu 3819

In the example above, although the word at the 5th position has a unique frequency within the
Benabena word list, wemust reiterate that the program does not discriminate if there are multiple
words with the same frequency at the nth position. That is, all words at the specified position will

14

be accounted for and included in the output. The program therefore controls for alphabetic bias
unlike the standard head -n n command.

For instance, assuming that the text file input is:

A 5

B 4

C 4

D 3

head -n 2 would produce A 5 and B 4, but stopatn.sh 2 would also produce C 4 because C has
the same frequency as B.

stopatn.sh assumes it is invoked under bash, and that POSIX sort, head, and tail are all avail-
able.

Segment Informativity Measures

contextRep.py is a utility code responsible for calculating informativity measures of segments
within a word (Cohen Priva, 2008). It does so by comparing the likelihood of observing specific
segments in particular contexts to the likelihood of observing all segments in those same partic-
ular contexts. This program is currently implemented by sumstats01.py (described below), and
has no independent format.

Summary Statistics

sumstats01.py derives summary statistics of language and frequency files. Specifically, with
the help of translate04.py and contextRep.py, it calculates and displays the frequency counts
and informativity measures of a language’s phonemes based on an inputted word list. In addi-
tion, it calculates the percentage of words that can’t be translated. The format for sumstats01.py
(python3 sumstats01.py -l LANGRULES [-c CHECK] [-r READ] [-m MIN] [-N] [-A] [-@

MAX@]) is extremely similar to that of translate04.py, but it has additional parameters:

-l specifies the rules file, which should be in csv format.

-c specifies the verification file, which should be in csv or tsv format.

-r specifies a file from which words should be read for translation. Only the first word in every
line is read, to facilitate a use case with a counts column.

-m specifies the minimum frequency to consider (defaults to 1 if unspecified).

15

-N suppresses summary information.

-A enumerates all words and probabilities (not currently supported).

-@ specifies the number of @ words to include in the summary.

For Benabena, this might look like:

python3 sumstats01.py -l bef.rules -c bef.verify.csv -r bef_words.txt

Output from certain commands and scripts (e.g. cat, bzcat, and stopatn.sh) can also be piped
into sumstats01.py for analysis:

bzcat bef.txt.bz2 | ./stopatn.sh 5 2000 | python3 sumstats01.py -l bef.rules -c bef.verify.csv -r bef_words.txt

The output of the example immediately above is presented below:

seg informativity ,count

ɑ 0.8760839355957686 194761.0

i 0.9857145072876157 139055.0

o 1.0284684906591073 109887.0

e 1.5699446314044685 106487.0

n 1.674649351104794 86605.0

ɭ 2.1032185229521403 81180.0

h 1.681832682370468 67522.0

u 1.4940892170154876 66549.0

t 2.225576768421279 59317.0

ʔ 1.516808735143856 56922.0

m 2.2653764701844668 54622.0

ɸ 2.7737975472008305 40291.0

ɣ 2.3609439860066157 36594.0

k 3.3596143633894267 29630.0

j 3.1931525642526615 27244.0

s 3.1362605877238 20090.0

f 2.9103088863125226 19055.0

p 2.421597163332841 16058.0

Summary statistics:

processed (inc. skipped): 3938

skipped: 0

%@ words: 0.1

Top missing:

16

ï → '@' (287)

ROMU → '@ o m u' (35)

Metainformation

The metainformation summary table (langs-list.tsv) provides summary information about all
the languages. For each language, it contains:

code The BCP-47 language code.

name The language name.

family The language family.

macroarea The macroarea in which it belongs (Hammarström & Donohue, 2014).

nrules The number of rules files.

rules, rules_2 The rules files associated with the language. We ranked these based on how
successful the translations were, and referenced the corresponding verify and Crúbadán
word lists appropriately (i.e. rules vs. rules_2, verify vs. verify_2). Specifically, we
prioritized the rule sets that had the fewest untranslated words.

verify, verify_2 The verify files for the rules.

compromised A regular expression representing the language’s compromising element(s), typi-
cally conflation (only applicable for compromised languages).

compromised_other A comment that specifies the language’s compromising element(s) if it can’t
be represented by a regular expression.

We also added information that is mostly relevant to our own research purposes and less so
for others that intend to use the corpus. These include mainly pointers to word frequency lists,
e.g. Crúbadán (Scannell, 2007), OpenSubtitles (Tiedemann, 2009), and corpora based on LDC’s
IARPA Babel. They fall under the columns crubadan, crubadan2 (which correspond to rules and
rules_2), opensubtitles, and ldc. The word frequency lists are not available with the corpus
because they are licensed under their respective sources.

For the Average User

The foundation of this corpus relies on translating words to their phonemic form depending on
the language. One of our main goals was to enable future academic research. But what about the

17

general public? We feel that academic research and the resources used to implement it can be un-
necessarily complex for the general public, which diminishes intrigue. We further acknowledge
that corpus research and all the computational work required to use it may be daunting to the
average person. Considering that the core translation scheme of the XPF corpus might actually
be of interest to a lot of people, especially perhaps to those who are just starting their education
in linguistics or to those that are trying to teach or learn a new language, we have created a user
friendly version of this on our website (https://cohenpr-xpf.github.io/XPF/Convert-to-IPA.html)
where no manipulation of code is required. The website currently provides ways to translate al-
phabets to their phonemic representations, and to compare language use files to see which words
are over-represented and under-represented.

18

Table 3: XPF Corpus Languages

Language BCP-47 Code Language Family Status

Abau aau Sepik-Ramu
Abkhaz ab Northwest Caucasian
Akawaio ake Cariban Compromised
Alamblak amp Sepik-Ramu Compromised
Albanian sq Indo-European

Amanab amn Trans-New Guinea
Amele aey Trans-New Guinea
Angor agg Trans-New Guinea
Anjam boj Trans-New Guinea
Ankave aak Trans-New Guinea

Apalaí apy Cariban
Apurinã apu Arawakan
Arabela arl Zaparoan
Arabic ar Afro-Asiatic Compromised
Aragonese an Indo-European

Armenian hy Indo-European
Arosi aia Austronesian
Asháninka cni Arawakan Compromised
Asturian ast Indo-European
Au avt Torricelli

Awara awx Trans-New Guinea Compromised
Aymara ay Aymaran
Azerbaijani az Turkic
Bargam mlp Trans-New Guinea Compromised
Bashkir ba Turkic

Basque eu Isolate
Batak Karo btx Austronesian Compromised
Belarusan be Indo-European
Benabena bef Trans-New Guinea
Bislama bi English Creole

Bora boa Witotoan
Borong ksr Trans-New Guinea
Bribri bzd Chibchan Compromised
Bugis bug Austronesian
Bulgarian bg Indo-European

Bunama bdd Austronesian
Burarra bvr Australian
Candoshi-Shapra cbu Isolate
Cape Verdean Creole kea Portuguese Creole
Carib car Cariban

Catalan ca Indo-European Compromised
Cavineña cav Tacanan Compromised
Central Atlas Tamazight tzm Afro-Asiatic Compromised
Central Bikol bcl Austronesian Compromised
Cha’palaa cbi Barbacoan

Chavacano cbk Spanish Creole
Chayahuita cbt Cahuapanan
Choctaw cho Muskogean Compromised
Chol ctu Mayan

19

Table 3: XPF Corpus Languages (continued)

Language BCP-47 Code Language Family Status

Chuvash cv Turkic

Chʼortiʼ caa Mayan
Cofán con Isolate Compromised
Colorado cof Barbacoan Compromised
Crimean Tatar crh Turkic
Cusco Quechua quz Quechuan

Czech cs Indo-European
Daga dgz Trans–New Guinea
Dedua ded Trans-New Guinea
Djambarrpuyngu djr Pama-Nyungan
Erzya myv Uralic Compromised

Ese mcq Trans-New Guinea
Francisco León Zoque zos Mixe-Zoque
Gapapaiwa pwg Austronesian
Georgian ka Kartvelian
Guarani gn Tupian

Guayabero guo Guahiboan
Guhu-Samane ghs Trans-New Guinea
Haitian Creole ht French Creole
Hawaiian haw Austronesian
Hiligaynon hil Austronesian

Hindi hi Indo-European Compromised
Hmong hmn Hmong-Mien
Huallaga Huánuco Quechua qub Quechuan Compromised
Huarijío var Uto-Aztecan
Huehuetla Tepehua tee Tepehua

Hungarian hu Uralic
Iduna viv Austronesian
Ignaciano ign Arawakan
Ilocano ilo Austronesian
Indonesian id Austronesian Compromised

Inga inb Quechuan
Inuktitut iu Eskimo-Aleut
Ixil ixl Mayan Compromised
Ixtatán Chuj cnm Mayan
Jamaican Creole jam English Creole

Javanese jv Austronesian
Jola-Fogny dyo Niger-Congo Compromised
Kabardian kbd North Caucasian
Kagulu kki Niger-Congo
Kalaallisut kl Eskimo-Aleut

Kannada kn Dravidian
Karachay-Balkar krc Turkic Compromised
Kayabí kyz Tupi Compromised
Kazakh kk Turkic Compromised
Kirghiz ky Turkic

Kiribati gil Austronesian
Komba kpf Trans-New Guinea
Komi kv Uralic

20

Table 3: XPF Corpus Languages (continued)

Language BCP-47 Code Language Family Status

Korean ko Isolate
Kuku-Yalanji gvn Pama-Nyungan

Kunimaipa kup Trans-New Guinea
Kwoma kmo Sepik-Ramu Compromised
Macedonian mk Slavic
Malagasy mg Austronesian
Malayalam ml Dravidian Compromised

Maldivian dv Indo-European
Maltese mt Afro-Asiatic Compromised
Mam mam Mayan
Mamasa mqj Austronesian
Manam mva Austronesian

Mapos Buang bzh Austronesian Compromised
Mapudungun arn Araucanian Compromised
Mari chm Uralic Compromised
Matsés mcf Panoan Compromised
Mauwake mhl Trans-New Guinea

Mekeo mek Austronesian Compromised
Min Nan Chinese nan Sino-Tibetan
Misima-Panaeati mpx Austronesian Compromised
Modern Greek el Indo-European
Moose Cree crm Algonquian Compromised

Morisyen mfe French Creole Compromised
Mountain Koiali kpx Trans-New Guinea
Mufian aoj Torricelli Compromised
Muna mnb Austronesian Compromised
Mussau-Emira emi Austronesian

Mwani wmw Niger-Congo Compromised
Naasioi nas South Bougainville
Nabak naf Trans-New Guinea
Nahuatl nhe Uto-Aztecan
Naro nhr Khoe-Kwadi

Nehan nsn Austronesian
Nepali ne Indo-European Compromised
Nigerian Fulfulde fuv Niger-Congo Compromised
Nobonob gaw Trans-New Guinea
Nomaande lem Niger-Congo

Nomatsiguenga not Arawakan Compromised
Nunggubuyu nuy Gunwinyguan
Ömie aom Trans-New Guinea
Oriya or Indo-Aryan Compromised
Ossetian os Indo-European Compromised

Palauan pau Austronesian
Palikúr plu Arawakan Compromised
Pangasinan pag Austronesian Compromised
Paumarí pad Arauan
Pele-Ata ata isolate

Piapoco pio Arawakan
Pisaflores Tepehua tpp Totonacan Compromised

21

Table 3: XPF Corpus Languages (continued)

Language BCP-47 Code Language Family Status

Q’anjob’al kjb Mayan
Qeqchi kek Mayan Compromised
Rabinal Achi’ acr Mayan Compromised

Rawa rwo Trans-New Guinea Compromised
Rikbaktsa rkb Macro-Ge
Romanian ro Indo-European
Rotokas roo North Bougainville
Russia Buryat bxr Mongolic

Saint Lucian Creole French acf French Creole
Samoan sm Austronesian Compromised
Sepik Iwam iws Sepik-Ramu
Shilha shi Afro-Asiatic
Shipibo Konibo shp Panoan

Sinaugoro snc Austronesian
Sinhala si Indo-European
Slovak sk Indo-European Compromised
Somba-Siawari bmu Trans-New Guinea Compromised
South Tairora omw Trans-New Guinea

Spanish es Indo-European Compromised
Standard Malay zsm Austronesian Compromised
Sunwar suz Sino-Tibetan Compromised
Swahili sw Niger–Congo Compromised
Tabasco Chontal chf Mayan Compromised

Tajik tg Indo-European
Tamil ta Dravidian
Tarahumara tac Uto-Aztecan
Tatar tt Turkic
Telugu te Dravidian

Tok Pisin tpi English Creole
Tongan to Austronesian
Totontepec Mixe mto Mixe-Zoque
Turkish tr Turkic
Tuvan tyv Turkic

Tz’utujil tzj Mayan Compromised
Tzotzil tzo Mayan
Ukrainian uk Indo-European
Upper Sorbian hsb Indo-European
Usarufa usa Trans-New Guinea

Uyghur ug Turkic
Uzbek uz Turkic
Vietnamese vi Austroasiatic
Warlpiri wbp Pama-Nyungan
Wayana way Cariban

Wayuu guc Arawakan
Wolof wo Niger-Congo
Xicotepec de Juárez Totonac too Totonacan Compromised
Yakut sah Turkic Compromised
Yawa yva Yawa-Saweru

Yiddish yi Indo-European

22

Table 3: XPF Corpus Languages (continued)

Language BCP-47 Code Language Family Status

Yine pib Arawakan Compromised
Yucatec Maya yua Mayan
Yucuna ycn Arawakan
Yuracare yuz Isolate

Zaza zza Indo-European Compromised

23

References
Chung, J.-S. (2009). Orthography paper for mekeo language in central province of papua new guinea.

SIL Language and Culture Archives.
Cohen Priva, U. (2008). Using information content to predict phone deletion. In N. Abner & J.

Bishop (Eds.), Proceedings of the 27th West Coast Conference on Formal Linguistics (pp. 90–98).
Somerville, MA: Cascadilla Proceedings Project.

Dayley, J. P. (1985). Tzutujil grammar (p. xvi+412). Berkeley; Los Angeles: University of Califor-
nia Press.

Dryer, M. S., & Haspelmath, M. (Eds.). (2013). WALS online. Retrieved from https://wals.info/
Futrell, R., Levy, R. P., & Gibson, E. (2020). Dependency locality as an explanatory principle for

word order. Language, 96(2), 371–412. https://doi.org/10.1353/lan.2020.0024
Greenberg, J. H. (1966). Universals of language. Joseph H. Greenberg.
Hammarström, H., & Donohue, M. (2014). Some principles on the use of macro-areas in typolog-

ical comparison. Language Dynamics and Change, 4(1), 167–187. https://doi.org/10.1163/22
105832-00401001

Maddieson, Ian. (1984). Patterns of sounds. Cambridge: Cambridge University Press.
McIntosh, M. H. (1982). Aspects of fulfulde syntax and morphology (PhD thesis). University of

London.
Mielke, J. (2008). The emergence of distinctive features. OUP Oxford.
Moran, S., McCloy, D., & Wright, R. (Eds.). (2014). PHOIBLE online. Retrieved from http://phoibl

e.org/
Phillips, A., & Davis, M. (2009). Tags for Identifying Languages. https://doi.org/10.17487/RFC5646
Scannell, K. P. (2007). The Crúbadán project: Corpus building for under-resourced languages.

Building and exploring web corpora: Proceedings of the 3rd web as corpus workshop, 4, 5–15.
Seifart, F. (2006). Essentials of language documentation (J. Gippert, N. P. Himmelmann, & U. Mosel,

Eds.). https://doi.org/10.1515/9783110197730
Tadmor, U. (2009). Loanwords in the world’s languages (M. Haspelmath & U. Tadmor, Eds.). Re-

trieved from https://www.ebook.de/de/product/9194294/loanwords_in_the_world_s_langu
ages.html

Tan, H. Y., & Lim, H. (2011). Unicode canonical decomposition for hangeul syllables in regular
expression. IEICE Transactions on Information and Systems, E94.D(1), 146–154. https://doi.or
g/10.1587/transinf.E94.D.146

The unicode standard version 5.2.0. (2009). Mountain View, CA: The Unicode Consortium.
Tiedemann, J. (2009). News from OPUS - A collection of multilingual parallel corpora with tools

and interfaces. In N. Nicolov, K. Bontcheva, G. Angelova, & R. Mitkov (Eds.), Recent advances
in natural language processing: Vol. V (pp. 237–248). Borovets, Bulgaria: John Benjamins,

24

https://wals.info/
https://doi.org/10.1353/lan.2020.0024
https://doi.org/10.1163/22105832-00401001
https://doi.org/10.1163/22105832-00401001
http://phoible.org/
http://phoible.org/
https://doi.org/10.17487/RFC5646
https://doi.org/10.1515/9783110197730
https://www.ebook.de/de/product/9194294/loanwords_in_the_world_s_languages.html
https://www.ebook.de/de/product/9194294/loanwords_in_the_world_s_languages.html
https://doi.org/10.1587/transinf.E94.D.146
https://doi.org/10.1587/transinf.E94.D.146

Amsterdam/Philadelphia.
Woollams, G. (1996). A grammar of karo batak, sumatra. Pacific Linguistics.
Zipf, G. K. (1935). The psycho-biology of language: An introduction to dynamic philology.

Houghton, Mifflin.

25

	Preface
	Information about the Corpus
	Aim
	Name and abbreviation
	Distribution
	Corpus Composition
	Language Descriptions
	Language Grammars

	Translation Scheme
	Grammar Verification

	Utility Programs
	Evaluating Frequency Files
	Segment Informativity Measures
	Summary Statistics

	Metainformation
	For the Average User
	References

